Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38427275

RESUMO

Melanoma is the main cause of death among skin cancers and its incidence worldwide has been experiencing an appalling increase. However, traditional treatments lack effectiveness in advanced or metastatic patients. Immunotherapy, meanwhile, has been shown to be an effective treatment option, but the rate of cancers responding remains far from ideal. Here we have developed a personalized neoantigen peptide-based cancer vaccine by encapsulating patient derived melanoma neoantigens in polyethylenimine (PEI)-functionalised poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and coating them with polyinosinic:polycytidylic acid (poly(I:C)). We found that PLGA NPs can be effectively modified to be coated with the immunoadjuvant poly(I:C), as well as to encapsulate neoantigens. In addition, we found that both dendritic cells (DCs) and lymphocytes were effectively stimulated. Moreover, the developed NP was found to have a better immune activation profile than NP without poly(I:C) or without antigen. Our results demonstrate that the developed vaccine has a high capacity to activate the immune system, efficiently maturing DCs to present the antigen of choice and promoting the activity of lymphocytes to exert their cytotoxic function. Therefore, the immune response generated is optimal and specific for the elimination of melanoma tumour cells.

2.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240369

RESUMO

In the last few years, the importance of neoantigens in the development of personalized antitumor vaccines has increased remarkably. In order to study whether bioinformatic tools are effective in detecting neoantigens that generate an immune response, DNA samples from patients with cutaneous melanoma in different stages were obtained, resulting in a total of 6048 potential neoantigens gathered. Thereafter, the immunological responses generated by some of those neoantigens ex vivo were tested, using a vaccine designed by a new optimization approach and encapsulated in nanoparticles. Our bioinformatic analysis indicated that no differences were found between the number of neoantigens and that of non-mutated sequences detected as potential binders by IEDB tools. However, those tools were able to highlight neoantigens over non-mutated peptides in HLA-II recognition (p-value 0.03). However, neither HLA-I binding affinity (p-value 0.08) nor Class I immunogenicity values (p-value 0.96) indicated significant differences for the latter parameters. Subsequently, the new vaccine, using aggregative functions and combinatorial optimization, was designed. The six best neoantigens were selected and formulated into two nanoparticles, with which the immune response ex vivo was evaluated, demonstrating a specific activation of the immune response. This study reinforces the use of bioinformatic tools in vaccine development, as their usefulness is proven both in silico and ex vivo.


Assuntos
Vacinas Anticâncer , Melanoma , Neoplasias , Neoplasias Cutâneas , Humanos , Antígenos de Neoplasias/genética , Imunidade , Desenvolvimento de Vacinas , Neoplasias/genética
3.
Drug Deliv Transl Res ; 13(5): 1520-1542, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37022605

RESUMO

The interest of extracellular vesicles (EVs) in cancer immunotherapy is increasing every day. EVs are lipid bilayer vesicles released by most cells, which contain the molecular signature of their parent cell. Melanoma-derived EVs present antigens specific to this aggressive type of cancer, but they also exert immunomodulatory and pro-metastatic activity. Until now, most reviews focus on the immunoevasive characteristics of tumour-derived EVs, but do not help to overcome the issues related to them. In this review, we describe isolation methods of EVs from melanoma patients and most interesting markers to oversee their effect if they are used as antigen carriers. We also discuss the methods developed so far to overcome the lack of immunogenicity of melanoma-derived EVs, which includes EV modification or adjuvant co-administration. In summary, we conclude that EVs can be an interesting antigen source for immunotherapy development once EV obtaining is optimised and the understanding of the mechanisms behind their multiple effects is further understood.


Assuntos
Vacinas Anticâncer , Vesículas Extracelulares , Melanoma , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Melanoma/terapia , Melanoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...